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1 Basic Propositions of Function Field
We use the same notation as the number field case.
A global field is a finite extension of Q or Fp(t).
Firstly, we recall a basic proposition of function field Fp(t):

Proposition 1.1. Let K = Fp(t) and R = Fp[t]. Then every nontrivial place of K is given by either
the “infinite place” | · |∞ defined by

| f /g|∞ = pdeg( f )−deg(g)

or by the finite place | · |P corresponding to an irreducible polynomial P(t) ∈ R.

Proof. Similar with the proof of Ostrowski’s Theorem, consider two cases:
(i) there exists a polynomial P ∈ Fp[t] such that |P| < 1;
(ii) for every irreducible polynomial P ∈ Fp[t] we have |P| > 1.

�

For place P (for convenience here, P may be ∞), the valuation | · |P can be embedded in the
complete field (Fp(t))P. For K is a global field, the valuation of every finite place ν of K is the
unique extension of | · |P where ν|P and

|α|ν = |NormK/Fp(t) α|
1/N
P N = [K : Fp(t)].

The completion of K respect to | · |ν is denoted by Kν.
The algebraic closure of Fp in K is a finite field, which is Fq where q = pm for some m > 1.

That is to say, Fq is the largest finite subfield of K.

Proposition 1.2. Let K be a global field with char K=p > 1. Then
(i) For every x ∈ K∗ we have |x|AK = 1;
(ii) The absolute value map | · |AK has image of the form qZ.

Proof. (i) Consider an irreducible polynomial P ∈ K. This has nontrivial absolute value at only
two places P and t−1;

(ii) Each component of AK under the adelic absolute value is qmZ (m=1 for infinite place), and
hence the total image is qZ. �

Proposition 1.3. The completion of K
(i) in the place t−1, is

K∞ = {

r∑
n=−∞

antn : an ∈ Fq},
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which has
ψ∞(x) = e2πitrFq/Fp (a1)/p ∈ S 1

as a nontrivial character;
(ii) in the place ν (ν is any irreducible polynomial in K), is

Kν = {

∞∑
n=r

anν
n : an ∈ the residue f ield k},

which has
ψν(x) = e2πitrk/Fp (a−1)/p ∈ S 1

as a nontrivial character.

Proof. For b ∈ Kν, take an integer r satisfying ordν(b) > r. Then ν−rb is an element of Oν. So we
can find an element ar ∈ k which coincides with the image of ν−rb in k. We have ordν(b − arν

r) >
r + 1, then by induction. �

Note that if s = t−1, so Fq(t) = Fq(s), the valuation | · |∞ is seen to be the type belonging to
the irreducible polynomial P(s) = s. So every place of function field K is non-Archimedean, thus
finite. The local theory of function field has no difference with that of number field. Particularly,
the Local Multiplicity One Theorem and its proof holds true here (We only use the part of non-
archimedean cases).

2 The Global Function Equation
We establish the normalization Haar measure d∗x on A∗K given by the product measure whose

factors are defined as follows: ∫ ∗

Oν

d∗xν = 1.

We recall the key formula in the global theory:

Theorem 2.1 (Poisson Summation Formula). Let x be an idele of K and let f be an element of
S (AK). Then ∑

γ∈K

f (γx) = |x|−1
∑
γ∈K

f̂ (γx−1)

Then yields the main theorem here:

Theorem 2.2. Let K is a global field, the global Tate’s integral

Z(s, χ, f ) =

∫
A∗

f (x)χ(x)|x|sd∗x

has meromorphic continuation to all s, and satisfies the function equation

Z(s, χ, f ) = Z(1 − s, χ−1, f̂ ).

The extended function Z(s, χ, f ) is in fact holomorphic everywhere except when there exists a
complex number λ such that χ(x) = |x|λ, in which case it has simple poles at s = 1 − λ and s = −λ
with corresponding residues given by

ρVol(C1
K) f̂ (0) and − ρVol(C1

K) f (0)
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respectively, where

ρ =

1 if K is number field;
1

log q if K is function field, charK = p > 1, q is explained above.

.

The key difference between number field and function field is

A∗/A∗1 =

R∗+ i f K is a number f ield;
Z i f K is a f unction f ield.

For K a function field, we have

Z(s, χ, f ) =
∑
n∈Z

Ztn(s, χ, f )

where
Ztn(s, χ, f ) =

∫
A∗1

f (tnx)χ(tnx)|tnx|sd∗x

with tn is a set of representatives of A∗/A∗1 and |tn| = qn. We can choose t−n = t−1
n , t0 = 1.

Lemma 2.3. We have the relation

Ztn(s, χ, f ) = Zt−n(1 − s, χ−1, f̂ ) + f̂ (0)
∫

C1
K

χ−1(t−nx)|t−nx|1−sd∗x − f (0)
∫

C1
K

χ(tnx)|tnx|sd∗x

Proof. Applying the Poisson Summation Formula, we have

Ztn(s, χ, f )+ f (0)
∫

C1
K

χ(tnx)|tnx|sd∗x =

∫
C1

K

∑
a∈K

f (atnx)χ(tnx)|tnx|sd∗x

=

∫
C1

K

|tnx|−1
∑
a∈K

f̂ (at−1
n x−1)χ(tnx)|tnx|sd∗x

=

∫
C1

K

|t−nx|
∑
a∈K

f̂ (at−nx)χ(tnx−1)|tnx−1|sd∗x

=

∫
C1

K

∑
a∈K

f̂ (at−nx)χ−1(t−nx)|t−nx|1−sd∗x

= Zt−n(1 − s, χ−1, f̂ ) + f̂ (0)
∫

C1
K

χ−1(t−nx)|t−nx|1−sd∗x.

�

Proof of the Theorem. From the lemma, we get that

Z(s, χ, f ) = Z1(s, χ, f ) +
∑
n∈Z+

Ztn(s, χ, f ) +
∑
n∈Z+

Ztn(1 − s, χ−1, f̂ ) + E′

where
E′ =

∑
n∈Z−

[
f̂ (0)χ−1(t−n)|t−n|

1−s
∫

C1
K

χ−1(x)d∗x − f (0)χ(tn)|tn|
s
∫

C1
K

χ(x)d∗x
]
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And we can also write

Z1(s, χ, f ) =
1
2

[Z1(s, χ, f ) + Z1(1 − s, χ−1, f̂ )] +
f̂ (0)
2

∫
C1

K

χ−1(x)d∗x −
f (0)
2

∫
C1

K

χ(x)d∗x

Putting εn = 1/2 for n = 0 or εn = 1 if n > 0, we then find that

Z(s, χ, f ) =
∑
n>0

εn[Ztn(s, χ, f ) + Ztn(1 − s, χ−1, f̂ )] + E

where

E =

0 i f χ , | · |λ∑
n>0 εnVol(C1

K)[ f̂ (0)qn(1−s−λ) − f (0)q−n(s+λ) i f χ = | · |λ.

In the second case, we have

E = Vol(C1
K)
[ f̂ (0)
1 − q1−s−λ −

f (0)
1 − q−s−λ −

f̂ (0) − f (0)
2

]
.

The theorem now follows as in the number field case. �

3 Riamann-Roch Theorem
In the function field case, the Poisson Summation Formula can be interpreted to yield the

Riamann-Roch Theorem of algebraic geometry. We shall show this after some preliminaries.
A divisor on K is a formal linear combination

D =
∑
ν

nνν

where the sum runs over all places ν of K and each coefficient nν is an integer that is zero for
almost all ν. The divisors on K naturally form an additive proup, denoted Div(K). The degree of
a divisor D =

∑
ν nνν is defined by

deg(D) =
∑
ν

nνdeg(ν)

where deg(ν) is the degree of the residue field Fqν over Fq. Thus qν = qdeg(ν).
Since deg(D + D′) = deg(D) + deg(D′), we see that the degree map defines a homomorphism

deg : Div(K)→ Z, the kernel of which is denoted Div0(K), the group of divisors of degree 0.
Given any f ∈ K∗, we can associate a divisor, called a principal divisor, by setting

div( f ) =
∑
ν

ν( f )ν

where ν( f ) denotes the valuation of f at ν. The quotient Div(K)/div(K∗) is denoted Pic(K) and
called the Picard group of K.

Proposition 3.1. We have div(K∗) ⊆ Div0(K).

Proposition 3.2. We have the following exact sequence of groups:

1→ F∗q → K∗ → Div0(K)→ Pic0(K)→ 0

where Pic0(K) denotes the quotient Div0(K)/div(K∗).
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Div(K) is given the partial ordering defined by

D =
∑
ν

nνν > D′ =
∑
ν

n′νν i f nν > n′ν.

With this, to each divisor D one may associate the following linear system of D:

L(D) = 0 ∪ { f ∈ K∗ : div( f ) > −D}.

We have at once L(D) is a vector space over Fq, and write l(D) for the dimension of the space. For
example, L(0) = Fq, l(0) = 0; if deg(D) < 0, L(D) = 0, l(D) = 0.

We may extend the divisor map from K to ideles IK:

div : IK → Div(K)

(xν) 7→
∑
ν

ν(xν)ν

It is easy to see that this map is surjective.

Proposition 3.3. For any divisor D, l(D) is finite.

Proof. Let f = ⊗ν fν ∈ S (AK) be defined by requiring that each component function fν be the
characteristic function on oν. Given any divisor D =

∑
ν nνν, we may associate an idele x(D) such

that ν(x(D)ν) = nν for all ν. Then we have for all γ ∈ K∗ that

f (γx(D)) =

1 i f ν(γx(D)ν) > 0 f or ∀ν(⇔ γ ∈ L(D))
0 otherwise

Note also that f (0) = 1.
Since f ∈ S (AK), the sum

∑
γ∈K f (γx(D)) converges. From our analysis above of f (γx(D)) as

a ”counting function”, the sum is exactly Card(L(D)) (= ql(D)). Hence l(D) is finite. �

Theorem 3.4 (Riemann-Roch, Geometric Form). Let K is a global field with charK = p > 1.
Then there exists an integer g > 0 (called the genus of K) and a divisor K of degree 2g−2 (called
the canonical divisor of K), such that

l(D) − l(K − D) = deg(D) − g + 1

for every divisor D.

Proof. Let ψ be a nontrivial character of AK/K and Pmν
ν be the conductor of ψν for each place ν.

We get a divisor by setting
K = −

∑
ν

mνν.

Let f = ⊗ν fν ∈ S (AK) be defined above. We have seen that for each divisor D =
∑
ν nνν,

ql(D) =
∑
γ∈K

f (γx(D)) = |x(D)|−1
∑
γ∈K

f̂ (γx(D)−1)

with x(D) defined as above. The second identity follows Poisson Summation Formula. Note that

|x(D)|−1 =
∏
ν

qnν
ν = q(

∑
ν nνdeg(ν)) = qdeg(D).
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Recall that the Fourier transform is taken relative to the self-dual measure dx on AK defined
by ψ. In the local place, there exists δν ∈ K∗ν such that ψ0,ν(x) = ψν(δ−1

ν x) has conductor O. Then
the conductor Pmν

ν is equal to δ−1
ν O.

f̂ν(x) =

∫
Kν

f (y)ψν(xy)dy =

∫
Oν

ψ0,ν(δνxy)|δν|1/2d0y = |δν|
1/2 f (δνx).

Then
f̂ν = |δν|

1/2 ·Char(Pmν
ν ).

Note that
|δν|

1/2 = q−(−mν)
ν = qdeg(ν)mν/2.

So that
∏

ν |δν|
1/2 = q1−g. Thus we have for ∀γ ∈ K∗ that

f̂ (γx(D)−1) =

q1−g i f ν(γx(D)−1
ν ) > mν ∀ν (⇔ γ ∈ L(K − D))

0 otherwise

We have ∑
γ∈K

f̂ (γx(D)−1) = ql(K −D)−g+1.

�

4 The Volume of C1
K

For any finite set S of places of K, let us now define the S -ideles of K by

IK,S = {x = (xν) ∈ IK : |xν| = 1,∀ν < S }

with norm-one given by
I1

K,S = I1
K ∩ IK,S .

Note also that IK,φ = I1
K,φ is compact.

As in Section 1, we may extend the divisor map:

div : I1
K → Div0(K)

(xν) 7→
∑
ν

ν(xν)ν

according to
∏

ν |xν|ν = 1 for x = (xν) ∈ I1
K . It is easy to see that this map is surjective and

ker(div) = IK,φ. From the equality IK,φ ∩ K∗ = F∗q, we get the short exact sequence:

1→ IK,φ/F∗q → I1
K/K

∗ = C1
K → Pic0(K)→ 0.

and
1→ F∗q → IK,φ → IK,φ/F∗q → 1.

And we can see that Pic0(K) is compact and discrete, and therefore finite.
Note that clearly

IK,φ =
∏
ν

Uν
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where Uν denotes the subset of elements of Kν of absolute value one. Following our normalization
of Haar measure, Vol(IK,φ) = 1.

As discussed above, we have

Vol(C1
K) = Vol(IK,φ/F∗q) · Vol(Pic0(K))

=
Vol(IK,φ)
Vol(F∗q)

·Card(Pic0(K))

=
1

q − 1
·Card(Pic0(K).

5 The Dedekind zeta-function
Let f = ⊗ν fν ∈ S (AK) be defined by requiring that each component function fν be the charac-

teristic function on oν. Then
Z(s, 1, f ) =

∏
ν

(1 − q−s
ν )−1.

The left-hand side can be continued analytically as a meromorphic function over the whole s-
plane; as the same is true for the right.

Definition 5.1. The meromorphic function ζK in the s-plane, given for Re(s) > 1, by the product

ζK =
∏
ν

(1 − q−s
ν )−1

Weil had a conjecture about Dedekind zeta-function, however what we talk about here is the
case for curves.

Theorem 5.2. Let K is a global field with charK = p > 1; let Fq be the largest finite subfield of K
and g its genus. Then

ζK(s) =
P(q−s)

(1 − q−s)(1 − q1−s)
where P is a polynomial of degree 2g, such that

P(u) = qgu2gP(1/qu).

Moreover, P(0) = 1, and P(1) = Card(Pic0(K)).

ζK and Z(s, 1, f ) have same poles, which are s = 1 and s = 0. Let u be q−s, then ζK(s) = R(u) =

P(u)/(1−u)(1−qu), where P is an entire function in the u-plane. Like the Riemann zeta-function,
we can get R(u)→ 1 as u→ 0, so that P(0)=1.

As in section 3, f̂ (x) = |δ|1/2 f (δx), with |δ|1/2 =
∏

ν |δν|
1/2 = q1−g. Thus we have

Z(s, 1, f̂ ) = |δ|1/2−sZ(s, 1, f ).

On the other hand, by global function equation, Z(s, 1, f̂ ) = Z(1 − s, 1, f ).So

P(qs−1)
(1 − qs−1)(1 − qs)

= Z(1 − s, 1, f ) = Z(s, 1, f̂ )

= |δ|1/2−sZ(s, 1, f ) = q(2−2g)(1/2−s) P(q−s)
(1 − q−s)(1 − q1−s)

(∗).
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Then we have P(u) = qgu2gP(1/qu), and

1 = P(0) = qg lim
u→0

u2gP(1/qu)

P(u) has a Laurent extension as P(u) is entire, but by the above identity we have P(u) must be a
polynomial which exactly has degree 2g. Moreover, compute the residue of s=0 by two sides of
(*), we can get P(1) = Card(Pic0(K)).

Weil conjecture also tells us the roots of the polynomial P(u) has absolute norm q−1/2
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